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Introduction
ECMWEF implemented 3D-Var in January 1996 — nearly 20 years ago.

Since then, a lot has happened...

@ 4D-Var (in November 1997)
@ Several changes of horizontal and vertical resolution
@ A big increase in the number an types of observations assimilated
@ Improvements to model physics, including to the TL & adjoint models
@ Better modelling of observation errors and biases, including:
» Variational bias correction
» Variational quality control
@ Modelling of model bias (weak constraint 4D-Var)
@ Better modelling of background error

» Wavelet J,
» Flow-dependent covariances derived from an Ensemble of Data
Assimilations (EDA)
@ etc. etc. etc.
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Introduction

As a result of all these changes, forecasts have gained almost 2 days of
predictability compared with those of 20 years ago.

We can get an idea of how much of this improvement came from
improvements in the observing system by comparing with a frozen
(reanalysis) system.

CSECMWF
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Operational System versus Reanalysis
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Introduction

It is difficult to separate the impact of improvements in the model from
improvements in the data assimilation system, since the model is a
component of the DA system.

But, it is clear that reduction in initial-state error is the main contributor
to the improvement in forecast skill.
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Introduction
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Introduction
|
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Some good ideas that worked out in practice

It would be impossible to cover all the good ideas that have contributed to
the improvement in forecast skill over the last 20 years.

Instead, | have picked a few examples with which | have been personally
involved, or which | find particularly interesting:

@ The Derber-Bouttier Jp
@ Wavelet covariance model for background errors

@ Huber norm quality control

CSECMWF
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Derber-Bouttier J,

When 3D-Var was first implemented at ECMWEF, the background
covariance model was based on a normal model decomposition:
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It was rather complicated, and did not work particularly well.

In particular, it did not give good results in the tropics, and there werg, e

problems with the tides.
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Derber-Bouttier J,

Derber and Bouttier (1997) simplified the background covariance model to:

1
Jy = =yt
b 2XX

where x = x, + BY/2y

The new formulation was cheaper (4 times fewer spectral transforms),
simpler, and more elegant than the old scheme.

It also produced a better-conditioned minimization problem.

CSECMWF
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Derber-Bouttier J,
The clever part of the Derber-Bouttier scheme was the choice of a control
variable and a balance operator that gave up gracefully in the tropics:

1/2 . " .
B/ “linear balance”, ,  regression
Xbal Chal bal

(Thal> Pbal)

Because of the way f appears in the linear balance equation, ®,,; — 0 in
the tropics.

This avoids imposing inappropriate balances in the tropics.

(An inability to “fail gracefully” in the tropics would stymie later attempts
to develop a potential-vorticity based balance operator for Jp.)

CSECMWF
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Derber-Bouttier J,

The use of regression to compute (T, Phg|) takes into account that
®p4| is not the true geopotential, but a diagnostic quantity derived from
the vorticity field.

It also neatly sidesteps the fact that the analytical hydrostatic equation is
not invertible for the vertical grid staggering used in the ECMWF model.

Overall, the Derber-Bouttier covariance model is a good example of the
KISS? principle.

The impact on forecast scores (particularly in the tropics) was dramatic.

ECECMWF
2Keep It Simple, Stupid
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Derber-Bouttier J,
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from Derber and Bouttier 1997, ECMWF Technical Memorandum 238 bt
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Derber-Bouttier J,

FORECAST VERIFICATION

FORECAST VERIFICATION
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Figure 36: Impact on the forecast scores on the J, revision (only) over 5 weeks of experimental
assimilation (2 in February 1997, 3 in June/July 1996).

from Derber and Bouttier 1997, ECMWF Technical Memorandum 238
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Wavelet Covariance Model

ECMWEF Newsletter No. 106 — Winter 2005/06
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Figure 2 Mean horizontal correlation of vorticity at model level 49

Distance (km)

500 1000 1500

j

—TT T T T T TTTIT T
2 3 5 10 20 30 50 100 200
Wavenumber n

Figure 1 Mean correlation between background errors of temper-

ature on model level 49 (near 850 hPa) and the corresponding errors

(near 850 hPa) as a function of distance.
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Wavelet Covariance Model

Figure 14: EDA estimate of surface pressure background error standard deviation (shaded
contours, left panel) and EDA estimate of background error correlation length scale (shaded
contours, right panel) in the area affected by hurricane Fanele. Plots are derived from a 50
member EDA, valid on 20 January 2009 at 09 UTC. Mean Sea Level Pressure contours (4 hPa
interval) are superimposed.

Bonavita 2011, proc ECMWF Seminar on Data Assimilation=; =
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Wavelet Covariance Model

The spherical harmonics for a single wavenumber n have amplitude
everywhere, so a covariance model that specifies vertical covariances for
each n has no possibility for modelling the spatial variation of covariance.

Conversely, specifying the covariances at each gridpoint does not allow any
variation of covariance with wavenumber.

The idea of the wavelet covariance model is to trade off some spectral
resolution in exchange for some spatial resolution.

The result is a better model for the covariances, in the same way that the
musical score describes the tune better than a list of frequencies (with no
indication when they are to be played) or a list of times (with no
indication which note is to be played).

CSECMWF
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Wavelet Covariance Model
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Figure 3 Anillustration of the benefits of resolving both temporal and spectral information.

Fisher 2006, ECMWF Newsletter 106
ECMWF
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Wavelet Covariance Model
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Figure 4 Weighting functions for the different wavenumber bands
in “Wavelet” J,. The coloured curves are referred to in Figure 5.

Fisher 2006, ECMWF Newsletter 106

Figure 5 The spatial weighting functions corresponding to the functions of wavenumber
highlighted in Figure 4, for a point over the Irish Sea. Red and blue contours represent posi-
tive and negative weights. The zero line is not plotted. Plots (a), (b), (c) and (d) refer to
the red, green, blue and black curves of Figure 4.
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Wavelet Covariance Model

The wavelet covariance model allows us to specify vertical covariances that
vary geographically, while retaining non-separability (i.e. that large/small
horizontal scales correspond to deep/shallow vertical correlations).

By assigning different variances to each waveband, we can control the
horizontal covariances, and allow them to vary spatially.

When originally introduced, we were only able to capture climatological
spatial variation.

Now, we we can fully exploit the potential of the wavelet formulation by
using an Ensemble of Data Assimilations to construct a flow-dependent
covariance model.

CSECMWF
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Huber norm quality control

Tuning the rejection limit

The left histogram on the left has been
transformed into the right histogram such
that the Gaussian part appears as a pair of
straight lines forming a ‘V’ at zero.

The slope of the lines gives the standard
deviation of the Gaussian.

The rejection limit can be chosen
to be where the actual distribution
is some distance away from the 'V’
- around 6 to 7 K in this case,
would be appropriate.
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Huber norm quality control

The theory of variational quality control was well known (Lorenc and
Hammon 1988; Lorenc and Ingleby 1993).

The idea is to replace the Gaussian observation error statistics with
something that better describes the true statistics of model error (and, in
particular, takes into account the fact that outliers are more likely than a
Gaussian model would suggest).

VarQC was implemented in the ECMWF system (Andersson and Jarvinen
1999).

In principle, all that is required is to specify the correct (non-Gaussian)
observation error statistics, and 4D-Var will weight the observations
correctly.

In practice, there were occasions when large numbers of mutually
supporting observations were rejected. CECMWF
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Huber norm quality control

27 Dec 1999 - French storm 18UTC

= Era interim analysis produced a low with min 970 hPa
* Lowest pressure observation (SYNOP: red circle)

963.5 hPa (supported by

. . . ECMWF Analysis VT:Monday 27 December 1999 18UTC Surface: Mean sea level pressure
neighbouring stations) = 0

At this station the analysis
shows 977 hPa

Analysis wrong by 16.5 hPa!

= High density of good quality
surface data for this case
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Huber norm quality control

1112: VarQC-rejections: Flag1 (green), Flag2 (orange), Flag3 (red), MSL analysis (black)

|
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Huber norm quality control

Most observation errors look like this:

But, occasionally we get gross errors (when anything is possible):

p(ObS error) =AX Pnormal + (1 — A) X Pgross
CCECMWF
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Huber norm quality control

This error model seems entirely reasonable, so why does it allow large
numbers of mutually supporting observations to be rejected?

The problem is that the quality control is too "binary”.

Observations outside the acceptance region are given zero weight, even if
there are many of them.

By giving such observations a reduced (but non-zero) weight, we allow
rejected observations to have a small influence on the analysis.

If there are several such observations, their small weights will add up to a
large influence on the analysis.

CSECMWF
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Huber norm quality control

Mike Fisher (ECMWF)
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Huber norm quality control
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RRKF — A good idea that didn't work out
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Fig.2  Synopsis of the proposed algorithm for cycling 4D-Var.

from: Courtier 1993: "Introduction to Numerical Weather Prediction Data
ASSImI|atI0n Methods” , proc. ECMWF/EUMETSAT Seminar on Developments in the Use of Satellite Data in

CSECMWF

Numerical Weather Prediction, 6-10 September 1993.
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The Reduced-Rank Kalman Filter

The main ideas behind the RRKF were:

o Approximation of the Hessian [J” = (P?)~1] based on eigenvectors
and eigenvalues calculated using a Lanczos algorithm.

@ Use of the eigenvalues and eigenvectors to precondition the
minimization.

@ Use of the Shermann-Morrison-Woodbury formula to invert the
approximation to get P?.

@ Randomization to produce samples drawn from N(0, P?).

All these ideas proved useful individually, and still form core parts of the
ECMWEF DA system (and other systems), even though the RRKF as a
whole failed to live up to expectations.

CSECMWF

Mike Fisher (ECMWF) 20 Years of Variational Data Assimilation June 3, 2015 32 /36



The Reduced-Rank Kalman Filter

For example, work on the Lanczos algorithm lead to CONGRAD:

o Still a widely used (and very efficient) minimization method for
3D/4D-Var.

o Generates eigenpairs for free while it minimizes

o Eigenpairs are very useful diagnostics (particularly in cases of slow or
non-convergence)

@ Allows an efficient spectral preconditioner to be built during the first
incremental minimization without additional effort

@ Allows information content to be calculated with strict mathematical
bounds (Golub and Meurant 1993)

Although not the full RRKF, a method for cycling background errors came
out of the RRKF work. The method was used at ECMWF between 1996
and 2005.

CSECMWF
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The Reduced-Rank Kalman Filter
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—— condition number estimate
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Figure 1: Convergence of conjugate gradients as a function of iteration for a 4dVar cost function. The
abscissa is the square of We Hessian norm of the difference between the control vector at a given iteration
and its value at the 118" iteration of the orthogonalized algorithm. The thick dashed curve is for the
standard conjugate gradient algorithm. The thick soild curve is for the version of the algorithm in which
each gradient is explicitly orthogonalized against its predecessors. The thin dashed curve uses the Polak-
Ribiere method to determine the descent direction. The thin solid line is the upper bound on the
convergence rate defined by equation 12. g :

ECMWF
Fisher 1998, proc ECMWF Seminar
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The Reduced-Rank Kalman Filter
Why did RRKF fail?

The main problem is that the RRKF relies on generating a small subspace
that contains a significant amount of analysis error.

A reasonable fraction of forecast error can be captured in this way (e.g.
Martin Leutbecher’s talk).

But the spectrum of analysis error is flat: ! I¥=_

Moreover, initial-time SVs are very sensitive to the choice of initial-time
metric. In principle, we should use the analysis error covariance matrix to
define the metric, but we don't know it well enough.

In addition, we didn't know about localization in the early 1990s...
ECMWF
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Discussion

This has been my selection of a few of the significant developments (and
failures) over the past 20 years.

What would be on your list?

What will be on the list 20 years from now?

CSECMWF
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